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Abstract

One Health connects three main health elements: humans, animals, and the environment. Protists influence all three, but their role in
the overall One Health framework has been widely overlooked. Here, we highlight the key characteristics that make protists integral to
the One Health framework and provide examples on the negative and positive effects of protists on each element. Most importantly,
we emphasize how protists connect all One Health elements. Finally, we discuss how protists can be leveraged to enhance One Health.
In conclusion, the vast diversity (phylogenetical, functional, and morphological) of protists is key in shaping One Health and can be
targeted to improve individual One Health elements and their connections.

Keywords: protists; One Health; animals; humans; environment; pathogen; mutualism; element cycling

Introduction
The “One Health” framework proposes tight links between the
health of humans, animals, and the environment (including
plants and microbes) [1]. The human microbiome has become
an acknowledged driver of human health [2]. Also, the environ-
mental microbiome shapes human health both directly, through
causative agents or antagonists of human diseases, or indirectly,
by influencing plant performance or ecosystem functions [3].
Typically, microbiomes are seen as the microbial community
mainly consisting of bacteria and fungi, thereby largely ignoring
the protists!

Protists are mostly single-celled organisms represented by
potentially millions of species, distributed across the eukaryotic
tree of life [4] and occurring in nearly all habitats (Fig. 1). Their
phylogenetic and morphological diversity is mirrored by their vast
functional diversity. These functions include the roles of protists
as major consumers of bacteria, fungi, and other eukaryotes, as
phototrophic carbon fixers, and as symbionts (from mutualists
to parasites) of humans, animals, and plants [5] (Fig. 1). The
role of protists in shaping the environment is evident in various
geological formations. Large parts of the Alps are composed of
limestone formed by foraminiferan protists; the famous cliffs
of Dover mainly consist of sedimented calcifying haptophytes.
The pyramids in Giza were built out of a limestone containing
mainly the species Nummulites gizehensis, which also gave this

foraminiferan its name. All animals, fungi, and plants evolved
from protistan ancestors and at least one third of the human
world population as well as most animal and plant species are
colonized by protists. Many protists are pathogens, Plasmodium
falciparum, the causative agent of malaria tropica, is responsible
for >600 000 human deaths per year [6]; Phytophthora infestans,
the cause of potato and tomato late blight, is among the most
infamous threats to plant health [7]. Even though these protist
pests are well known, most protists and their often-positive roles
in One Health remain neglected.

Here, we aim to provide a holistic overview of the immense
impact of protists on virtually all One Health elements (Fig. 2). For
that, we first focus on the unique aspects of protists in the One
Health framework compared to other microorganisms. Then, we
recap the role of protists as pathogens in the different One Health
elements. To continue, we present their positive effects, including
their complex roles in linking different One Health areas. Finally,
we show possible applications of protists to improve specific
components of One Health and how this ultimately affects the
overall One Health framework.

Key features: the importance of protists in
the One Health framework
Protists are phylogenetically by far the most diverse eukaryotes
[8]. Their species biodiversity is only matched by bacteria and
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Figure 1. Visual representation of the different roles that protists play in One Health in terrestrial, freshwater, and marine ecosystems. The category
“element cycling” embeds key processes such as primary production, decomposition, or nutrient regeneration. The icons solely represent the species
or the protist group but not the specific stage in which they might be present in the environment (e.g. trophozoite, cyst). The presence of the same
protist taxon in multiple hosts and ecosystems, performing distinct functions, illustrates their central role in One Health. Icons and connecting lines
are differentiated by the three main functions protists perform:pathogenic activities, mutualism and roles in element cycling. Some icons are
associated with more than one function, meaning that they might have different roles depending on the conditions. In the case of human symbionts,
the mutualistic role is still under debate.

viruses, and recent species have a morphological spectrum that
spans at least six orders of magnitude in size [5]. As the last
eukaryotic common ancestor (LECA) was already an organelle-
bearing, highly complex protist [9], what is the reason for this
complexity and evolutionary success?

In this section, we highlight three unique aspects of protist cell
biology and genetics that distinguish them from other microbes
and make them more comparable to metazoans, despite being
mostly unicellular. The combination of these three aspects has
greatly contributed to the evolutionary success and global distri-
bution of protists, including the development of highly pathogenic
life strategies, thereby constituting the basis of their significant
impact on the One Health framework.

First, protist cells are in many ways different from those of
prokaryotes and fungi, often they even resemble those of plants
and animals. It can be argued that protist cells might often
even be more complex than those of metazoans, as protists have
subcellular structures and organelles with organ-like functions,
without the association of different cell types and tissues as in
metazoans. The phagotrophic vesicle cycle and osmoregulatory
systems in protists can be compared to the intestine and kidney

in animals and this vividly demonstrates that organ-like sub-
functionalization of multicellular species can be realized by pro-
tists even in a single cell. These examples can be extended to cell
walls, glycocalyx, extrusomes, and diverse motility structures like
flagella, cilia, and pseudopodia.

Second, the ability for recombination, known as sex, as a key
factor for genetic adaptation was certainly already present in
the LECA and, therefore, exists in most protists [10]. Sex was a
game changer in evolutionary history, allowing for the correction
of deleterious mutations and increased genetic variability, thus
supporting speciation [11]. Fungi, plants, and animals built upon
the gain of sex as they originated from protist ancestors, making
these “crown eukaryotes” appear as distinct tips of the protist-
dominated eukaryotic iceberg.

The third factor concerns epigenetics, inherent to all protists
to organize chromatin. Many protist species use complex epi-
genetic mechanisms, which paradoxically resemble metazoan
differentiation processes. In metazoans, epigenetics enables cell
differentiation of a single genome into different tissues, and this
involves biochemical modifications of chromatin, histones, and
DNA, to manifest transcriptional activity. Rather than simple
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Figure 2. Representation of the roles protists play within the three individual One Health elements (human health: top, animal health: left,
environmental health: right) and for the links between them. Numbers represent the following functions and applications: (1) cross
infections/persistence and alternative hosts; (2) direct and indirect services among One Health elements (e.g. water purification, bioindication,
biofertilizers, or food production); (3) vectors of pathogens; (4) direct effects on different elements of One Health such as pathogens or mutualistic
protists; (5) pathogen removal and grazing; (6) primary production; and (7) algal blooms.

transcriptional regulation of single genes, epigenetics allows con-
certed gene expression patterns resulting in precisely determined
cellular phenotypes. Protists use epigenetics to achieve pheno-
typic plasticity of a single cell. Different life cycle stages, for
instance, are the results of epigenetic differentiation processes
and are essential for the complex transmission and infection
strategies of parasitic protists, giving them access to new habitats
or hosts, or the targeted use of vectors for dispersal. One of the
best examples of epigenetically controlled life stages enabling
a complex transmission and infection mechanism with several
rounds of amplification is Plasmodium, with sexual reproduction
in the mosquito and multiple asexual stages in the vertebrate
host [12].

These different aspects highlight the considerable combination
of features that is found exclusively in the protist kingdom:
cellular complexity and diversity, genetic adaptation by sex, and
the ability for epigenetic adaptation by advanced chromatin
dynamics. Both adaptive aspects, in association with their
unicellularity and r-selection strategy allow rapid adaptation
and evolution, resulting in an incredibly diverse phylogenetic
diversity. These complex cells have been adapted to nearly all
ecosystems thus being important components of the One Health
framework.

Tiny menace: the dark side of protists in
health and disease
The most prominent role of protists—both within individual
health domains and in linking them through the One Health
framework—is as pathogens that negatively impact the health of
humans, animals, and plants. The diversity of pathogenic protists
might lie in the millions of species [13] and is dominated by the
group Apicomplexa, with over 300 currently described genera
and, potentially, about one apicomplexan species infecting every
animal species [14].

Several pathogenic protists exhibit high host specificity and
have adapted to infect specific hosts and within these often
specific organs or, if intracellular, specific cell types. Two examples
for parasites specific for humans are P. falciparum and Entamoeba
histolytica. The former causes malaria and infects red blood cells.
Adult humans with 20–30 trillion erythrocytes can host several
trillion cells of P. falciparum parasites, as over 30% of all erythro-
cytes can be infected [15]. Similarly, one human individual can
harbor millions of cells of E. histolytica in their large intestine, and
invasive amoebae may ingest more than a dozen erythrocytes
per cell [16]. In animals, one of the most economically dam-
aging diseases, costing several billion USD annually due to the
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loss of animals meant for food production, is avian coccidiosis,
caused by Eimeria spp. Another economically damaging disease is
saprolegniosis, caused mainly by protists of the genus Saprolegnia,
which infect freshwater fish and pose a major challenge to fish
production worldwide with losses up to 50% in certain regions
[17]. Protists are also major pathogens of plants. A textbook
example linking to One Health is P. infestans, the causative agent
of potato blight, which gave rise to the Irish famine. This protist
destroyed three quarters of the potato harvest after introduction
to Ireland, reducing the Irish population by about half, through
famine and emigration [18]. Phytophthora infestans is still a major
threat to potato cultivation in the world, conservatively estimated
to cost 6 billion USD per year [18]. Other economically relevant
protist plant pests include Plasmodiophora brassicae, which causes
clubroot disease, and Phytomonas staheli, causing coconut and oil
palm wilts [19].

In contrast to all these more or less host-specific examples,
some protists have broad host ranges and cross-species impacts,
making control measures even more complicated. For example,
Trypanosoma cruzi, which causes Chagas disease in humans, can
infect various cell types across probably hundreds of animal
species. Toxoplasma gondii is infecting about one-third of the total
human population, and can infect virtually all warm-blooded
animals [20].

Population dynamics of parasitic protists are generally linked
to the population dynamics of their respective hosts as well as
to the environmental conditions. Consequently, global changes,
such as climate change, have direct and indirect effects on
pathogenic protists. Moreover, human interference—including
transportation, breeding or control of reservoir and vector
host species, and treatment and prevention measures—plays
a crucial role in determining population dynamics of parasitic
protists. Leishmania infantum, causing visceral and cutaneous
leishmaniasis in humans, is an example of a parasite that
has been transported by humans around the globe [21]. This
transportation has been predominantly within its main reservoir
host, the dog, linking animal and human health. Moreover,
the global dog population has been amplified to over 1 billion
individuals by humans, thus enlarging the host population
for this parasitic protist. Additionally, the vectors (species of
sandflies) of L. infantum are longer active in many regions due to
human-driven global warming, which leads to more transmission.
Finally, the development of the pathogen within the sandflies
is accelerated by higher temperatures. Anthropogenic activities
may also increase the chance of pathogen spillovers, especially
those from wildlife to humans. Examples are Plasmodium knowlesi
spreading from monkeys to humans in Southeast Asia [22] or
Babesia microti from rodents to humans in the Eastern USA [23].
However, parasitic protists can also spill over from humans to
wildlife. Today in the USA, beavers act as important amplifiers of
Giardia spp. of human origin after contamination of freshwater
with human feces [24].

Major achievements toward prevention and control of many
diseases that directly affect humans, livestock, or economically
relevant plant species have been made in the past decades. How-
ever, pathogens that (also) infect wildlife are much more difficult
to control, moreover, new diseases may emerge, often driven
by human activities. One example is the emergence of amoe-
bic gill disease caused by Neoparamoeba perurans with the surge
of aquaculture worldwide [25], costing already millions of USD
in losses [26]. Moreover, protists may act as reservoirs of other
pathogens (prokaryotes, eukaryotes, and viruses) as well as of
antibiotic-resistant bacteria and antibiotic-resistant genes [27],

complicating the efforts to control disease in humans or animals.
An example is the “Trojan Horse” case of Acanthamoeba spp., which
can host and thereby protect a wide range of microorganisms
from disinfection, such as Legionella spp. and other pathogenic
bacteria [28].

Tiny allies: exploring the positive impact of
protists in ecosystems and health
Protists also play positive roles under the One Health framework
as mutualists, primary producers, nutrient catalyzers, and regu-
lators of microbial communities. In fact, protists can be keystone
species by influencing microbiome composition and diversity
and, thus, ecosystem functions such as determining plant perfor-
mance [29].

The main positive direct link of protists with human health
is as mutualists. Some protists are gut symbionts of humans,
maintaining and shaping gut microbial communities and their
functions, thus impacting the immune response and vulnerability
to infectious and inflammatory diseases [30]. Examples are the
parabasalids Dientamoeba fragilis and Pentatrichomonas hominis, or
the amoebozoans Entamoeba coli, Entamoeba hartmanii, Iodamoeba
buetschlii, and Endolimax nana. The presence of these gut protists
is assumed to be positively related to gut microbial richness,
which in turn is positively related to gut functions, but their
prevalence is impacted by industrialization via food preferences,
use of antibiotics, and lifestyle [30].

In ruminants, protist gut symbionts control microbial popula-
tions, synthesis of fatty acids, food degradation, rumen methano-
genesis, and fiber digestion [31]. Some gut protists are obligatory
mutualists, such as those living in the hindguts of termites, which
degrade the lignocellulose from wood [32]. Protists also form
symbiotic relationships in aquatic systems, where they enhance
ecosystem stability and resilience. A textbook example of marine
protist symbioses is the relationship of the dinoflagellate Sym-
biodinium and reef-building corals. The collapse of such relation-
ships, as seen in coral bleaching due to anthropogenic-driven
global changes, underscores the importance of these symbioses
for maintaining biodiversity and ecosystem services in marine
environments [33].

Mutualism is also part of the functional spectrum of protists
in the environmental element linked to One Health. For instance,
lichens, being associations between mostly autotrophic protists
and fungi, are paradigmatic examples of mutualism. These
organisms are of utmost importance for carbon fixation,
especially in ecosystems without or with scarce vegetation cover
[34]. Photosynthesis overall is a key function of protists in the
environment. Free-living autotrophic protists, including diatoms,
dinoflagellates, and other phytoplankton, contribute up to 50%
of the total carbon fixed on Earth [35]. Soil algae are estimated
to fix ∼3.6 Pg of total carbon per year [36]. However, the role
of protists in the global carbon cycle extends beyond fixation;
they also participate throughout the entire cycle as saprotrophs,
phagotrophs, and lysotrophs [37]. Moreover, protists influence not
only the carbon cycle but also the cycles of other elements, such
as silica and phosphorus. Diatoms, for instance, utilize silica to
build their cell walls (frustules), playing a role in biogeochemical
cycling of silicon [38]. Furthermore, protists contribute to the
decomposition of organic matter practically in all the environ-
ments they are present, by facilitating the recycling of carbon
and other elements [35, 37]. These increases in nutrient element
cycling occur predominantly through indirect pathways, with
protists catalyzing microbial activity and shaping the structure
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and function of microbial communities. The enhanced cycling of
carbon, nitrogen, phosphorus, and other elements can increase
plant performance and productivity as reviewed in, e.g. [5, 39],
enhancing ecosystem services like food or wood production.
While modify bacterial communities by hosting unicellular organ-
isms, including plant-beneficial ones, positively affecting plant
performance [40].

Protists do not only positively influence the One Health
elements individually but also the links between them. Symbiotic
protists in the rumens might impact animal health, also affecting
human health via food production [41]. Similarly, the positive
effect of predatory protists on plant performance and production
enhances both animal and human health [5]. Even pathogenic
protists may have a beneficial effect in the environment as some
pathogenic protists such as Parvilucifera sinerae can reduce the
harmful effects of algal blooms by controlling their populations
[42]. Furthermore, pathogenic protists can increase biodiversity
by reducing populations of dominant species, thereby liberating
niches for rarer species to occupy (e.g. plant diversity; [43]).

Tiny tools for planetary health: harnessing
protists for environmental solutions
The above highlighted ecological and functional diversity of pro-
tists that greatly influence One Health makes protists ideal can-
didates for application. The evolution of protists added a hitherto
unknown level of complexity to organismic interactions that is
phagocytosis and predation, thus shifting the evolutionary driving
forces from a physiological to a morphological focus. Unlike bac-
teria or yeasts, which mainly use membrane transport to ingest
nutrients, protists recognize, hunt, catch, and ingest individual
prey species (such as bacteria or other protists). Although hunting
is believed to have required increased intelligence and skills in
human evolution, this example shows that predation can be
specific and far from simple filtration.

Today, the action of protist predation in shaping microbial-
mediated biodegradation is the base for successful wastewater
treatments. Furthermore, their sensitivity to biotic and abiotic
changes, often being higher than bacteria and fungi, renders pro-
tists useful as bioindicators of ecosystem health [44]. Protists have
long been employed to assess the quality of both natural and arti-
ficial water bodies. For instance, in 1999, the Bavarian State Office
for Environment introduced “The Microscopic Picture in Biological
Wastewater Treatment,” as a resource for wastewater treatment
plant operators [45]. This resource enables wastewater treat-
ment plant (WWTP) operators to evaluate the physicochemical
parameters of their bioreactors by determining the community
composition of designated indicator species through microscopic
techniques and thus is significantly faster than conventional
chemical measurements [46]. Certain groups of testate amoebae,
such as Arcellinida, have been also suggested as bioindicators of
freshwater quality, being sensitive to disturbances [47]. Similarly,
soil protists have been suggested as indicators of both soil health
and plant performance, with certain groups, such as cercozoan
protists, being positively correlated to plant yield [48].

Beyond bioindication of plant performance, their roles in nutri-
ent cycling, releasing nutrients to the soil via the so-called micro-
bial loop, make protists potential tools in agroecosystems as
biofertilizers, with products already being in place [49]. Another
potential application for protists in agriculture concerns biocon-
trol agents due to their potential predatory action over pathogens,
and by changing microbiome community composition toward
pathogen-antagonistic bacteria [49].

In biotechnology and medicine, the highly developed cell biol-
ogy of protists is now increasingly being used. A common example
is the highly developed glycosylation machinery of the endoplas-
mic reticulum and Golgi apparatus, which enables the heterolo-
gous expression and complex glycosylation of proteins—such as
human proteins—crucial for their proper function. Several pro-
tists, such as the ciliate Tetrahymena, offer an individual combina-
tion of benefits for heterologous expression in biotechnology. Its
highly complex glycosylation machinery, which is easy to trans-
form, cheap, and fast in cultivation, is not met by mammalian,
yeast, or bacterial expression systems, and therefore already in
application [50]. The complex cell biology of protists has a long
scientific tradition in the molecular sciences, and the two Nobel
Prizes for telomerase and ribozymes are just the tip of the iceberg
of groundbreaking discoveries utilizing protists.

Concluding remarks
We have presented protists here as key players in One Health,
affecting all its individual elements and connecting human, ani-
mal, and environmental health. From one point of view, pro-
tists are among the deadliest and economically most damaging
organisms. In contrast, their functional importance in numerous
ecosystem functions, especially in element cycling (e.g. C or N)
via decomposition, predation, or photosynthesis presents them as
key mutualists in all One Health elements. Notably, the indirect
roles of protists in One Health are often overlooked but crucial to
understand how protists interact with other microbes, e.g. by act-
ing as vectors for pathogens or mutualists, or by shaping micro-
biome compositions. As research continues to uncover the com-
plexities of protist diversity, their contributions to environmental
health will likely gain greater recognition, offering insights into
sustainable ecosystem management and conservation strategies
and numerous new biotechnological applications.

Overall, we believe that protists play a key role in planetary
health by influencing different ecosystem functions, including
elemental cycling and microbiome compositions, serving as mod-
els for industry, and connecting the different elements of the One
Health.
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